Second Zagreb index of trees with fixed diameter

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ordering of trees by multiplicative second zagreb index

‎for a graph $g$ with edge set $e(g)$‎, ‎the multiplicative second zagreb index of $g$ is defined as‎ ‎$pi_2(g)=pi_{uvin e(g)}[d_g(u)d_g(v)]$‎, ‎where $d_g(v)$ is the degree of vertex $v$ in $g$‎. ‎in this paper‎, ‎we identify the eighth class of trees‎, ‎with the first through eighth smallest multiplicative second zagreb indeces among all trees of order $ngeq 14$‎.

متن کامل

Trees with Given Diameter and Minimum Second Geometric–Arithmetic Index∗

The second geometric-arithmetic index GA2(G) of a graph G was introduced recently by Fath-Tabar et al. [2] and is defined to be ∑ uv∈E(G) √ nu(e,G)nv(e,G) 1 2 [nu(e,G)+nv(e,G)] , where e = uv is one edge in G, and nu(e,G) denotes the number of vertices in G lying closer to u than to v. In this paper, we characterize the tree with the minimum GA2 index among the set of trees with given order and...

متن کامل

On the second order first zagreb index

Inspired by the chemical applications of higher-order connectivity index (or Randic index), we consider here the higher-order first Zagreb index of a molecular graph. In this paper, we study the linear regression analysis of the second order first Zagreb index with the entropy and acentric factor of an octane isomers. The linear model, based on the second order first Zag...

متن کامل

The Hyper-Zagreb Index of Trees and Unicyclic Graphs

Topological indices are widely used as mathematical tools to analyze different types of graphs emerged in a broad range of applications. The Hyper-Zagreb index (HM) is an important tool because it integrates the first two Zagreb indices. In this paper, we characterize the trees and unicyclic graphs with the first four and first eight greatest HM-value, respectively.

متن کامل

On trees and the multiplicative sum Zagreb index

For a graph $G$ with edge set $E(G)$, the multiplicative sum Zagreb index of $G$ is defined as$Pi^*(G)=Pi_{uvin E(G)}[d_G(u)+d_G(v)]$, where $d_G(v)$ is the degree of vertex $v$ in $G$.In this paper, we first introduce some graph transformations that decreasethis index. In application, we identify the fourteen class of trees, with the first through fourteenth smallest multiplicative sum Zagreb ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Scientific Publications of the State University of Novi Pazar Series A: Applied Mathematics, Informatics and mechanics

سال: 2020

ISSN: 2217-5539,2466-3778

DOI: 10.5937/spsunp2001021z